Depth-varying rupture properties of subduction zone megathrust faults
نویسندگان
چکیده
[1] Subduction zone plate boundary megathrust faults accommodate relative plate motions with spatially varying sliding behavior. The 2004 Sumatra-Andaman (Mw 9.2), 2010 Chile (Mw 8.8), and 2011 Tohoku (Mw 9.0) great earthquakes had similar depth variations in seismic wave radiation across their wide rupture zones – coherent teleseismic short-period radiation preferentially emanated from the deeper portion of the megathrusts whereas the largest fault displacements occurred at shallower depths but produced relatively little coherent short-period radiation. We represent these and other depth-varying seismic characteristics with four distinct failure domains extending along the megathrust from the trench to the downdip edge of the seismogenic zone. We designate the portion of the megathrust less than 15 km below the ocean surface as domain A, the region of tsunami earthquakes. From 15 to 35 km deep, large earthquake displacements occur over large-scale regions with only modest coherent short-period radiation, in what we designate as domain B. Rupture of smaller isolated megathrust patches dominate in domain C, which extends from 35 to 55 km deep. These isolated patches produce bursts of coherent short-period energy both in great ruptures and in smaller, sometimes repeating, moderate-size events. For the 2011 Tohoku earthquake, the sites of coherent teleseismic short-period radiation are close to areas where local strong ground motions originated. Domain D, found at depths of 30–45 km in subduction zones where relatively young oceanic lithosphere is being underthrust with shallow plate dip, is represented by the occurrence of low-frequency earthquakes, seismic tremor, and slow slip events in a transition zone to stable sliding or ductile flow below the seismogenic zone.
منابع مشابه
Splay Faults in the Makran Subduction Zone and Changes of their Transferred Coulomb Stress
The Makran subduction zone in northeast and the Sumatra subduction zone (Sunda) in the west have been known as tsunamigenic zones of the Indian Ocean. The 990 km long Makran subduction zone is located offshore of Iran, Pakistan and Oman. Similar to many subduction zones all over the world, the Makran accretionary prism is associated with an imbricate of thrust faults across the zone, which may ...
متن کاملCompressive sensing of frequency-dependent seismic radiation from subduction zone megathrust ruptures
Megathrust earthquakes rupture a broad zone of the subducting plate interface in both along-strike and along-dip directions. The along-dip rupture characteristics of megathrust events, e.g., their slip and energy radiation distribution, reflect depth-varying frictional properties of the slab interface. Here, we report high-resolution frequency-dependent seismic radiation of the four largest meg...
متن کاملRupture characteristics of major and great (Mw≥7.0) megathrust earthquakes from 1990 to 2015: 2. Depth dependence
Depth-varying characteristics of high-frequency seismic radiation for megathrust earthquakes have been inferred from several recent giant earthquakes and large tsunami earthquakes. To quantify any depth dependence more extensively, we analyzed 114 Mw ≥ 7.0 thrust-faulting earthquakes with centroid depths from 5 to 55 km on circum-Pacific megathrusts using teleseismic body wave finite-fault inve...
متن کاملFuture Cascadia megathrust rupture delineated by episodic tremor and slip
[1] A suite of 15 episodic tremor and slip events imaged between 1997 and 2008 along the northern Cascadia subduction zone suggests future coseismic rupture will extend to 25 km depth, or 60 km inland of the Pacific coast, rather than stopping offshore at 15 km depth. An ETS-derived coupling profile accurately predicts GPSmeasured interseismic deformation of the overlying North American plate, ...
متن کاملFrictional properties of incoming pelagic sediments at the Japan Trench: implications for large slip at a shallow plate boundary during the 2011 Tohoku earthquake
The 2011 Tohoku earthquake (Mw 9.0) produced a very large slip on the shallow part of a megathrust fault that resulted in destructive tsunamis. Although multiple causes of such large slip at shallow depths are to be expected, the frictional property of sediments around the fault, particularly at coseismic slip velocities, may significantly contribute to large slip along such faults. We have thu...
متن کامل